
Alina Yurenko

Developer Advocate for GraalVM

Oracle Labs

Accento

Supercharge Your Native Image
Applications

Photo by Andrea Brataas on Unsplash

• Alina Yurenko / @alina_yurenko

• Developer Advocate for GraalVM at
Oracle Labs

• Love open source and communities 🤝

• Love both programming 👩💻 & natural
languages 🗣

About me

3

Ahead-of-Time (AOT) 
“Native Image” toolchain

Language RuntimesHigh-performance 
optimizing compiler

 native-image MyMainClass

./mymainclass

JIT AOT
java MyMainClass

 native-image MyMainClass

./mymainclass

JIT AOT
java MyMainClass

Clojure

Open source on GitHub: github.com/oracle/graal

GraalVM
Native Image

GraalVM Native Image

• Enables compiling Java programs into

standalone native executables

• Performs static analysis to identify all code

reachable from the entry point

• Instant startup, low memory footprint,

perfect for cloud deployments

• Integrations with Java microservices

frameworks

Native Image Build Process

Ahead-of-Time

Compilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:

All classes from application,

libraries, and VM

Iterative analysis until

fixed point is reached

Code in

Text Section

Image Heap in

Data SectionImage Heap

Writing

Output:

Native executable

AOT vs JIT: Startup Time

JIT

Load JVM executable

Load classes from file system

Verify bytecodes

Start interpreting

Run static initializers

First tier compilation (C1)

Gather profiling feedback

Second tier compilation (GraalVM or C2)

Finally run with best machine code

AOT

▪ Load executable with prepared heap

▪ Immediately start with optimized machine code

AOT vs JIT: Memory Footprint

JIT

Loaded JVM executable

Application data

Loaded bytecodes

Reflection meta-data

Code cache

Profiling data

JIT compiler data structures

AOT

▪ Loaded application executable

▪ Application data

Tips & Tricks 🛠

14

JIT AOT

Application payload

Dynamic Code
Cache

Metaspace
Class Files

VM Runtime and
Compiler

Garbage
Collector

Profiling
Feedback

Memory Scalability

Application payload

Application
Machine Code

Garbage
Collector

Application payload
Application payload

Application payload
Application payload

Application payload

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

shared

duplicated
per process

Example: horizontal scaling of microservices

Java HotSpot VM

• 4 VM instances = 4 times the memory

Native Image

• 4 VM instances = 2 times the memory

• Image heap shared between processes

• Machine code shared between processes

Memory Usage in MB 
Quarkus Apache Tika ODT in a “tiny” configuration and with the serial GC
(1 CPU core per process, -Xms32m -Xmx128m) – JDK 11

0

200

400

600

800

1000

1200

1 process 2 processes 3 processes 4 processes

1109.0562

842.6914

576.3267

309.9619

132.2417107.79383.344258.8955

Native Image EE HotSpot C2

Tips & Tricks 🛠

• Build, test and run Java applications as native executables

• Out-of-the-box support for native JUnit 5 testing

• testing Java code with JUnit 5 behaves in the same way in native
execution as with the JVM

• allows libraries in the JVM ecosystem to run their test suites
via GraalVM Native Image

 <plugin>

 <groupId>org.graalvm.buildtools</groupId>

 <artifactId>native-maven-plugin</artifactId>

 </plugin>

Native Build tools: Official Gradle and Maven Plugins 🏗

Demo: Testing Native Image appliсations

16

• @EnabledInNativeImage
• used to signal that the annotated test class or test method is

only enabled when executing within GraalVM native images
• when applied at the class level, all test methods within that class will be

enabled within a native image

• @DisabledInNativeImage
• used to signal that the annotated test class or test method is

only disabled when executing within a GraalVM native image. 

GraalVM Native Image & JUnit

Native Integration Tests

18

• GraalVM 🤝 Reflection!

• Native Image tries to resolve the target elements through a static
analysis that detects calls to the Reflection API

• If the analysis can not automatically detect your use of
reflection, you might need additional configuration

• Trace reflection, JNI, resource usage on the JVM with the tracing
agent:

• Agent to record usage and produce configuration files for
native images

• java -agentlib:native-image-agent=config-output-dir=META-

INF/native-image ...

• Manual adjustment / addition might still be necessary

• Many frameworks & libraries ship reflection config that will be
automatically picked up

GraalVM & Reflection?

19

GraalVM & Reflection: demo

20

What about reflection in 3rd-party libraries?

graalvm.org/native-image/libraries-and-frameworks

Is there an easier way to handle reflection? Yes!

22

Optimizing
Performance 🚀

Optimizing performance of native image

native-image

 --pgo-instrument

Instrumented Binary

native-image --pgo optimized binary 🚀

Profiles (.iprof)

Relevant
Workloads

AOT at the speed of JIT 🚀

Performance of Spring Petclinic with Oracle GraalVM Native Image, GraalVM CE Native Image, and GraalVM CE with C2 JIT.

Benchmark details: https://medium.com/graalvm/graalvm-for-jdk-21-is-here-ee01177dd12d

AOT at the speed of JIT 🚀

Performance of Spring Petclinic with Oracle GraalVM Native Image, GraalVM CE Native Image, and GraalVM CE with C2 JIT.

Benchmark details: https://medium.com/graalvm/graalvm-for-jdk-21-is-here-ee01177dd12d

Compressing native images with UPX

* more aggressive compression algorithms can have runtime impact

Static native images

• statically linked against musl-libc , which can be used

without any additional library dependencies

• great for deploying on slim or distroless container images

FROM gcr.io/distroless/base

COPY build/native-image/application app
ENTRYPOINT ["/app"]

Mostly static native images

• statically link against all libraries except libc

• great for deploying such native images on distroless
container images

Static and Mostly Static Images

28

https://musl.libc.org/

Reduced Attack Surface 🛡

• No new unknown code can be loaded at run time

• Only paths proven reachable by the application are included in the image

• Reflection is disabled by default and needs an explicit include list

• Deserialization only enabled for specified list of classes

• Just-in-time compiler crashes, wrong compilations, or “JIT spraying” to create

machine code gadgets are impossible

What’s the catch?

• GraalVM 🤝 Reflection!

• Native Image tries to resolve the target elements through a static analysis that detects calls to
the Reflection API

• If the analysis can not automatically detect your use of reflection, you might need
additional configuration

• Trace reflection, JNI, resource usage on the JVM with the tracing agent

• Manual adjustment / addition might still be necessary

GraalVM & Reflection?

31

Required Build Time Step

• Computational effort necessary at build time

• Need a powerful machine with the same target architecture & OS

• Use GraalVM with GitHub Actions: github.com/marketplace/actions/github-action-for-graalvm

• Many larger apps can build with 2 GB of memory

• Develop in JIT mode for fast development, only use AOT for final deployment

• For best throughput, use profile-guided optimizations

https://github.com/marketplace/actions/github-action-for-graalvm

What’s new in GraalVM

34

35

https://github.com/oracle/graal/issues/7626

https://github.com/oracle/graal/issues/7626

GraalVM Community roadmap on GitHub

https://github.com/orgs/oracle/projects/6

https://github.com/orgs/oracle/projects/6

Get started with

GraalVM

Get started with GraalVM

graalvm.org

or

sdk install java 21-graal

http://graalvm.org

40

Questions & let’s connect!
 GraalVM resources

Thank you!

Alina Yurenko

@alina_yurenko

https://twitter.com/alina_yurenko

