
From Java 17 to 21 and beyond:
Amber – Loom – Valhalla

José Paumard

Java Developer Advocate

Java Platform Group

https://twitter.com/JosePaumard

https://github.com/JosePaumard

https://www.youtube.com/c/JosePaumard01
https://www.youtube.com/user/java
https://www.youtube.com/hashtag/jepcafe

https://fr.slideshare.net/jpaumard

https://www.pluralsight.com/authors/jose-
paumard

https://dev.java

https://www.youtube.com/c/JosePaumard01
https://www.youtube.com/c/JosePaumard01
https://www.youtube.com/c/JosePaumard01
https://www.youtube.com/user/java
https://www.youtube.com/hashtag/jepcafe
https://fr.slideshare.net/jpaumard
https://www.pluralsight.com/authors/jose-paumard
https://www.pluralsight.com/authors/jose-paumard
https://dev.java/

12/6/2023Copyright © 2023, Oracle and/or its affiliates3

https://dev.java/

https://dev.java/

12/6/2023Copyright © 2023, Oracle and/or its affiliates4

Tune in!

Inside Java Newscast

JEP Café

Road To 21 series

Inside.java

Inside Java Podcast

Sip of Java

Cracking the Java
coding interview

12/6/2023Copyright © 2021, Oracle and/or its affiliates |5

https://openjdk.org/

OpenJDK is the place where it all happens

https://openjdk.java.net/

12/6/2023Copyright © 2021, Oracle and/or its affiliates |6

https://jdk.java.net/

OpenJDK is the place where it all happens

https://openjdk.java.net/

12/6/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted7

Amber, Loom, Valhalla

12/6/2023Copyright © 2021, Oracle and/or its affiliates |8

Amber

- adding Pattern Matching to the Java language

- adding small language features to enhance productivity

Data Oriented Programming!

Amber, Loom, Valhalla

12/6/2023Copyright © 2021, Oracle and/or its affiliates |9

Loom

- bring a new concurrent programming model

- add virtual threads

- structured concurrency

- and scoped values

Get rid of Reactive Programming!

Amber, Loom, Valhalla

12/6/2023Copyright © 2021, Oracle and/or its affiliates |10

Valhalla

- value types

- user defined primitive types

- specialized generics

Do not choose between a clear model and performances!

Amber, Loom, Valhalla

12/6/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted11

Project Amber

12/6/2023Copyright © 2021, Oracle and/or its affiliates |12

Encapsulation

OOP according to Java

class City {
private String name;

public String name() {
this.name

}
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |13

Interface and sub-typing

OOP according to Java

class City implements Populated { ... }

Populated populated = new City(...);

interface Populated {
int population();

}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |14

Late binding (virtual call or polymorphism)

OOP according to Java

Populated populated = new City(...);
var population = populated.population();

interface Populated {
int population();

}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |15

Anatomy of a Web Application

Your
code!

12/6/2023Copyright © 2021, Oracle and/or its affiliates |16

Anatomy of a Web Application

Browser
request

request

response

Your
code!

JSON API DB API Authentication API

SUCCESS STORY!

REST API

12/6/2023Copyright © 2021, Oracle and/or its affiliates |17

OOP in Java
Interfaces are driving the way
you organize your applications

12/6/2023Copyright © 2021, Oracle and/or its affiliates |18

DOP in Java
Data is driving your code

Data First!

12/6/2023Copyright © 2021, Oracle and/or its affiliates |19

Model the problem using
a class and an interface

+ late binding

Object Oriented Programming

final class City implements Populated {
private final int population;

public int population() {
return population;

}
}

final class Department implements Populated {
private final String population;

public int population() {
return population;

}
}

interface Populated {
public int population();

}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |20

When an interface changes, the compiler tells you what
classes need to be updated, which is great!

Consequences

12/6/2023Copyright © 2021, Oracle and/or its affiliates |21

Everytime a new businesss requirement shows up, you
end up adding methods in your interfaces

Soon, you will have many fields and many methods in
your Object Model classes

Drawbacks?

12/6/2023Copyright © 2021, Oracle and/or its affiliates |22

1) Your business modules depend on these classes, but
they depend on elements they don’t use!

2) Because every module depend on the Object Model,
changing it becomes more and more expensive

3) Do you remove some code that is not used anymore?

Drawbacks!

12/6/2023Copyright © 2021, Oracle and/or its affiliates |23

Separate Data and Code

Data Oriented Programming

interface Populated { }

final class City
implements Populated { }

final class Department
implements Populated { }

12/6/2023Copyright © 2021, Oracle and/or its affiliates |24

Separate Data and Code

Data Oriented Programming

interface Populated { }

final class City
implements Populated { }

final class Department
implements Populated { }

static String population(Populated populated) {
 if (populated instanceof City) {
 var city = (City) populated;
 return city.name();
 }
 if (populated instanceof Department) {
 var department = (Department) populated;
 return department.name();
 }
 throw new AssertionError();
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |25

Separate Data and Code

Data Oriented Programming

interface Populated { }

final class City
implements Populated { }

final class Department
implements Populated { }

static String population(Populated populated) {
 if (populated instanceof City) {
 var city = (City) populated;
 return city.population();
 }
 if (populated instanceof Department) {
 var department = (Department) populated;
 return department.population();
 }
 throw new AssertionError();
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |26

Your compiler cannot help you anymore

You need three language features for the compiler to be
able to help you again

- Records and Sealed Type to model your data. If you
change your model, the compiler can help you

- Pattern Matching: to deconstruct your records

- A new switch on sealed types

Problems?

12/6/2023Copyright © 2021, Oracle and/or its affiliates |27

Separate Data and Code

Data Oriented Programming

sealed interface Populated
permits City, Department { }

record City(String name, int population)
implements Populated { }

record Department(String name, int population)
implements Populated { }

12/6/2023Copyright © 2021, Oracle and/or its affiliates |28

Data Oriented Programming

static String population(Populated populated) {
 if (populated instanceof City) {
 var city = (City) populated;
 return city.population();
 }
 if (populated instanceof Department) {
 var department = (Department) populated;
 return department.population();
 }
 throw new AssertionError();
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |29

Data Oriented Programming

static String population(Populated populated) {
 if (populated instanceof City) {
 var city = (City) populated;
 return city.population();
 }
 if (populated instanceof Department) {
 var department = (Department) populated;
 return department.population();
 }
 throw new AssertionError();
}

static String population(Populated populated) {

 return switch(populated) {
 case City(String _, int population) -> population;
 case Department(String _, int population) -> population;
 };
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |30

Data Oriented Programming

static String population(Populated populated) {
 if (populated instanceof City) {
 var city = (City) populated;
 return city.population();
 }
 if (populated instanceof Department) {
 var department = (Department) populated;
 return department.population();
 }
 throw new AssertionError();
}

static String population(Populated populated) {

 return switch(populated) {
 case City(String _, int population) -> population;
 case Department(String _, int population) -> population;
 };
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |31

Pattern matching for instanceof (type pattern)

Amber: Pattern Matching

if (o instanceof User user) {

 String name = user.getName();

 // my business code
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |32

Pattern matching for instanceof (record pattern)

Amber: Record Pattern

if (o instanceof User(String name, int age)) {

 // use name and age
}

record User(String name, int age) { }

12/6/2023Copyright © 2021, Oracle and/or its affiliates |33

The unnamed pattern avoids the calling of an accessor
when it is not needed

The Unnamed Pattern (prev 21)

record Point(double x, double y) {}
record Circle(Point center, double radius) {}

if (o instance Circle(_, var radius)) {
 var surface = PI*radius*radius;
 ...
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |34

Amber: Switch Expression +
Record Pattern

int surface = switch (shape) {
 case Square(int edge) -> edge*edge;
 case Circle(int radius) -> PI*radius*radius;
};

sealed interface Shape
permits Square, Circle { }

12/6/2023Copyright © 2021, Oracle and/or its affiliates |35

Data is more important than code

- Not always true

The compiler can help you (like with OOP)

- Records define your data

- Sealed types make switch exhaustive

- Record patterns detect structural modification

Data Oriented Programming

12/6/2023Copyright © 2021, Oracle and/or its affiliates |36

OOP - Polymorphism

- Add new subtypes

- No new operations

Wadler’s Expression of the Problem

DOP

- Add new
operations

- No new subtypes

You cannot get both 

If you are not the owner of the code

Phil Wadler

12/6/2023Copyright © 2021, Oracle and/or its affiliates |37

Deconstructor enables record pattern on class

More Patterns: Record Pattern on Classes

class Point {

private int x, y;

matcher(int x, int y) Point { // provisional syntax
match this.x, this.y;

}
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |38

Allows matcher methods
to be named

Named Pattern

final class Optional<T> {

final private T value;
final private boolean present;

matcher(T t) of { // provisional syntax
if (present) match this.value;
no-match;

}

matcher() empty { // provisional syntax
if (!present) match;
no-match;

}
}

Optional<String> opt = ...;

switch(opt) {
case Optional.of(String s) -> ...;
case Optional.empty() ->

}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |39

Using record pattern in assignments

Imperative Destructuring

Point p = ...;
let Point(int x, int y) = p;

for (let Map.Entry(var key, var value): entrySet) {
...

}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |40

JDK 21 JDK 22

Type Pattern Final

Record Pattern Final

Unamed Pattern Preview ?

Named Pattern ?

Assignement ?

Amber: Current Plan for the JDK 21

12/6/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted41

Loom

12/6/2023Copyright © 2021, Oracle and/or its affiliates |42

What does Loom want to fix?

Reactive programming!

Loom: Virtual Threads

12/6/2023Copyright © 2021, Oracle and/or its affiliates |43

What is wrong with this code?

Concurrency Issues

ExecutorService es = ...;
var f1 = es.submit(SomeService::readImages);
var f2 = es.submit(SomeService::readLinks);

Page page = new Page(f1.get(1, TimeUnit.SECONDS),
f2.get(1, TimeUnit.SECONDS));

12/6/2023Copyright © 2021, Oracle and/or its affiliates |45

A classical business use case:

Loom: Virtual Threads

if (!userService.exists(name)) {
 User user = new User(name);
 userService.create(user);
}
User user = userService.findByName(name);
var cart = cartService.loadCartFor(user);
var totalPrice =
 cart.items().stream()
 .mapToInt(Item::price)
 .sum();
var transactionId = paymentService.pay(user, totalPrice);
boolean sent = emailService.send(user, cart, transactionId);

12/6/2023Copyright © 2021, Oracle and/or its affiliates |46

Loom: Virtual Threads
CompletableFuture.supplyAsync(
 () -> userService.exists(name))
 .thenCompose(
 userExists -> {
 if (!userExists) {
 User user = new User(name);
 return supplyAsync(() -> userService.create(user));
 } else {
 return CompletableFuture.completedFuture(true);
 }
 }
)
 .thenCompose(
 userCreated -> {
 if (userCreated) {
 return supplyAsync(() -> userService.findByName(name));
 } else {
 return CompletableFuture.completedFuture(null);
 }
 }
)
 .thenCompose(
 user -> {
 if (user != null) {
 return CompletableFuture.supplyAsync(() -> cartService.loadCartFor(user))
 .thenCompose(cart -> {
 int totalPrice = cart.items().stream().mapToInt(Item::price).sum();
 return CompletableFuture.supplyAsync(() -> paymentService.pay(user, totalPrice))
 .thenCompose(transactionId -> CompletableFuture.supplyAsync(() -> emailService.send(user, cart, transactionId)));
 });
 } else {
 return CompletableFuture.completedFuture(null);
 }
 }
);

12/6/2023Copyright © 2021, Oracle and/or its affiliates |47

Why is it bad to block?

Concurrency Issues

Json request = buildContractRequest(id);
String contractJson = contractServer.getContract(request);
Contract contract = Json.unmarshal(contractJson);

ns

12/6/2023Copyright © 2021, Oracle and/or its affiliates |48

Why is it bad to block?

Concurrency Issues

Json request = buildContractRequest(id);
String contractJson = contractServer.getContract(request);
Contract contract = Json.unmarshal(contractJson);

msns

12/6/2023Copyright © 2021, Oracle and/or its affiliates |49

Why is it bad to block?

Concurrency Issues

Json request = buildContractRequest(id);
String contractJson = contractServer.getContract(request);
Contract contract = Json.unmarshal(contractJson);

ms nsns

12/6/2023Copyright © 2021, Oracle and/or its affiliates |50

Why do we need to write asynchronous code based on
callbacks?

Because a Thread is idle 99.9999% of the time when you
are processing I/O data:

How many threads do you need to have 100% CPU ?

Concurrency Issues

ms nsns

12/6/2023Copyright © 2021, Oracle and/or its affiliates |51

A java.lang.Thread is a wrapper on a kernel (or
platform) thread

It needs:

- ~1ms to start

- ~2MB of memory to store its stack

- context switching costs ~0,1ms

You can only have several thousands of them

Concurrency Issues

12/6/2023Copyright © 2021, Oracle and/or its affiliates |52

It means that, instead of beeing busy 0.0001% of the time

Your CPU is now busy about 1% of the time

It’s not enough!

Concurrency Issues

12/6/2023Copyright © 2021, Oracle and/or its affiliates |53

At this point, you have two solutions:

1) You give 1k – 1M tasks to each thread. This is what
asynchronous frameworks are doing.
And it comes with a high maintenance cost!

Concurrency Issues

CompletableFuture.supplyAsync(
 () -> userService.exists(name))
 .thenCompose(
 userExists -> {
 if (!userExists) {
 User user = new User(name);
 return supplyAsync(() -> userService.create(user));
 } else {
 return CompletableFuture.completedFuture(true);
 }
 }
)
 .thenCompose(
 userCreated -> {
 if (userCreated) {
 return supplyAsync(() -> userService.findByName(name));
 } else {
 return CompletableFuture.completedFuture(null);
 }
 }
)
 .thenCompose(
 user -> {
 if (user != null) {
 return CompletableFuture.supplyAsync(() -> cartService.loadCartFor(user))
 .thenCompose(cart -> {
 int totalPrice = cart.items().stream().mapToInt(Item::price).sum();
 return CompletableFuture.supplyAsync(() -> paymentService.pay(user, totalPrice))
 .thenCompose(transactionId -> CompletableFuture.supplyAsync(() -> emailService.send(user, cart, transactionId)));
 });
 } else {
 return CompletableFuture.completedFuture(null);
 }
 }
);

12/6/2023Copyright © 2021, Oracle and/or its affiliates |54

Is reactive
programming
a good solution?

Concurrency Issues

12/6/2023Copyright © 2021, Oracle and/or its affiliates |55

At this point, you have two solutions:

1) You give 1k – 1M tasks to each thread. This is what
asynchronous frameworks are doing.
And it comes with a high maintenance cost!

2) Or you create another model of thread, that is 1000
lighter, so that you can have 1M of them

Concurrency Issues

12/6/2023Copyright © 2021, Oracle and/or its affiliates |56

A virtual thread is a thread

- Race conditions, visibility, locking, … are the same

- But lighter by a factor of 1000

Loom: Virtual Threads

A Platform thread:
- takes ~1ms to start
- consumes ~20MB
- context switching ~0,1ms

A Virtual thread:
- takes ~1ms to start
- consumes ~200kB

12/6/2023Copyright © 2021, Oracle and/or its affiliates |57

A virtual thread is a wrapper on your task, that can be
mounted and unmounted from a platform thread

Everytime a virtual thread blocks (I/O, synchronization,
…), it is unmounted from its platform thread

Blocking a virtual thread is fine, because it does not block
any platform thread

Loom: Virtual Threads

12/6/2023Copyright © 2021, Oracle and/or its affiliates |58

Launching a virtual thread:

Loom: Virtual Threads

Runnable task =
 () ->
 System.out.println("I am running in " +
 Thread.currentThread().getName());

Thread thread = Thread.ofVirtual()
 .unstarted(task);

thread.start();
thread.join();

12/6/2023Copyright © 2021, Oracle and/or its affiliates |59

Creating a pool of virtual threads:

Loom: Virtual Threads

ExecutorService service =
 Executors.newVirtualThreadPerTaskExecutor();

var future = service.submit(task);

12/6/2023Copyright © 2021, Oracle and/or its affiliates |60

Running a task in a Virtual Thread

Is more expensive than running it in a Platform Thread

Running non-blocking, in-memory task is useless!

Virtual Threads are meant to run blocking (I/O) tasks

Loom: Virtual Threads

12/6/2023Copyright © 2023, Oracle and/or its affiliates61

From the Platform Thread Point of View

P. ThreadWith Virtual
Threads

With React. Progr. P. Thread

12/6/2023Copyright © 2023, Oracle and/or its affiliates62

1) The performances of Virtual Threads and Reactive
Programming should be the same
The differences come from the frameworks

2) In both cases, blocking a Platform Thread is a major
performance hit

3) With Reactive Programming, not blocking a Platform
Thread is the responsibility of the code!

4) With Virtual Threads, it is handled by the API (Java I/O,
NIO)

From the Platform Thread Point of View

12/6/2023Copyright © 2023, Oracle and/or its affiliates63

1) Are cheap to create, you can have a million of them
Their memory consumption is low
And will improve over time

2) Are used to run blocking code
If you don’t plan to block them, don’t use them!

3) Prevent platform threads to be blocked
No need to write asynchronous / reactive code
anymore

Wrapping up Virtual Threads

12/6/2023Copyright © 2021, Oracle and/or its affiliates |64

StructuredConcurrency brings new patterns of code to
leverage virtual threads and avoid asynchronous code

Loom: Structured Concurrency (prev 21)

12/6/2023Copyright © 2021, Oracle and/or its affiliates |65

Loom: Structured Concurrency (prev 21)

try (var scope = new StructuredTaskScope()) {

 var sup1 = scope.fork(() -> readImages());
 var sup2 = scope.fork(() -> readText());
 var sup3 = scope.fork(() -> readLinks());

 scope.join();

 // do something with sup1, sup2, ...
 return result;
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |66

Loom: Structured Concurrency (prev 21)

Page Scope

Link ScopeImage Scope

12/6/2023Copyright © 2021, Oracle and/or its affiliates |67

Exiting the try-with-resource block cleans up everything

No more loose thread!

Loom: Structured Concurrency (prev 21)

12/6/2023Copyright © 2021, Oracle and/or its affiliates |68

An alternative model for ThreadLocal variables

ThreadLocal are supported by virtual threads

But you can do better!

ScopedValue (prev 21)

12/6/2023Copyright © 2021, Oracle and/or its affiliates |69

What is wrong with ThreadLocal?

They are mutable

They can be inherited

They are bound to a thread, and a thread is not bound

ScopedValues want to be bounded!

ScopedValue (prev 21)

12/6/2023Copyright © 2021, Oracle and/or its affiliates |70

ScopedValues are non-modifiable

They are not bound to a particular thread

ScopedValue (prev 21)

ScopedValue<String> key = new ScopedValue.newInstance();

ScopedValue.where(key, "KEY_1")
 .run(() -> doSomethingSmart()));

ScopedValue.where(key, "KEY_2")
 .run(() -> doSomethingSmart())
 .run(() -> soSomethingSmarter());

12/6/2023Copyright © 2021, Oracle and/or its affiliates |71

ScopedValues are non-modifiable

They are not bound to a particular thread

ScopedValue (prev 21)

void doSomethingSmart() {
 if (key.isBound()) {
 String value = key.get();
 ...
 } else {
 throw new IllegalStateException("Key is not bound");
 }
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |72

ScopedValues are NOT transmitted to threads or virtual
threads

Because a ScopedValue wants to be bound

A StructuredTaskScope IS bound

ScopedValues are transmitted to StructuredTaskScope

ScopedValue (prev 21)

12/6/2023Copyright © 2021, Oracle and/or its affiliates |73

JDK 21 JDK 22

Virtual Threads Final

Structured Concurrency Preview ?

Scoped Values Preview ?

Loom: Current Plan for the JDK 21

12/6/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted74

Valhalla

12/6/2023Copyright © 2021, Oracle and/or its affiliates |75

Valhalla

12/6/2023Copyright © 2021, Oracle and/or its affiliates |76

Valhalla

12/6/2023Copyright © 2021, Oracle and/or its affiliates |77

Why does nobody follow this principle?

Valhalla

12/6/2023Copyright © 2021, Oracle and/or its affiliates |78

Summing populations with ints

Valhalla: Value Classes

int[] populations = {...};

int totalPopulation = 0;
for (int population: populations) {
 totalPopulation += population;
}

int totalPopulation = Arrays.stream(populations).sum();

12/6/2023Copyright © 2021, Oracle and/or its affiliates |79

Summing populations with records

Valhalla: Value Classes

record Population(int population) {}
Population[] populations = {...};

Population totalPopulation = Population.zero();
for (Population population: populations) {
 totalPopulation = totalPopulation.add(population);
}

Population totalPopulation =
 Arrays.stream(populations)
 .reduce(Population.zero(), Population::add);

12/6/2023Copyright © 2021, Oracle and/or its affiliates |80

Pointer chasing is a performance hit

Layout in Memory

population

int

Population

Population[]

intpopulation int int int

int[]

12/6/2023Copyright © 2021, Oracle and/or its affiliates |81

Creating histograms

Valhalla: Value Classes

// this is the histogram of population by state
Map<String, Integer> populationByState = ...;

record State(String name, List<City> cities) {}
record City(String name, Population population) {}
record Population(int population) {}

Map<State, Population> populationByState = ...;

12/6/2023Copyright © 2021, Oracle and/or its affiliates |82

Pointer chasing is a performance hit

Layout in Memory

Map<State, Population>

Entry

State String

Population

int

12/6/2023Copyright © 2021, Oracle and/or its affiliates |83

1st goal: make it so that you do not have to choose
between readable code and performances

Make abstraction (almost) free

Codes like a class, Works like an int

Valhalla

12/6/2023Copyright © 2021, Oracle and/or its affiliates |84

Value class: you need to give up on something!

- is implicitely final

- has instance field that are final

- does not have an address (no synchronization)

- == compares the fields

Records can be declared value record

Valhalla: Value Classes

12/6/2023Copyright © 2021, Oracle and/or its affiliates |85

Valhalla: Value Classes

value record Population (int population) {}

value record City(String name, Population population) {}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |87

Because they do not need to be stored as an object with
an address, value objects offer better performances:

- they can be stored in contiguous zones of the memory

- they can be inlined in variables or in registers

- no pointer chasing to access them

Valhalla: Value Classes

12/6/2023Copyright © 2021, Oracle and/or its affiliates |88

Extra pointers / space in memory

Layout in Memory

population

int

Population[] object version

12/6/2023Copyright © 2021, Oracle and/or its affiliates |89

No more pointer, no more header

Layout in Memory

intpopulation int int int

Population[] value type version

12/6/2023Copyright © 2021, Oracle and/or its affiliates |92

What is a primitive type?

- It is not an object, it does not have an address

- == compares the value

- It does not make sense to modify a value

- It cannot be null

So it needs a default value (that is not null)

Valhalla: Primitive Type

12/6/2023Copyright © 2021, Oracle and/or its affiliates |93

A primitive type cannot be null
So the following declares an array of new Population(0)

Valhalla: Primitive Type

Population[] pops = new Population[10]; // filled with default values

record Population(int population) {} // suppose this is a primitive type

12/6/2023Copyright © 2021, Oracle and/or its affiliates |94

But you can wrap an array with a list:

You need a way to declare that something cannot be null

Valhalla: Primitive Type

List<Population> pops = Arrays.asList(new Population[10]);

pops.set(0, null); // this is legal code

Population[] pops = new Population[10]; // filled with default values

12/6/2023Copyright © 2021, Oracle and/or its affiliates |95

Defining custom primitive types requires:

- to be able to define default values

- to modify the type system, so that you can declare that
a reference cannot be null, where you are using it

Valhalla: Primitive Type

12/6/2023Copyright © 2021, Oracle and/or its affiliates |96

Declaring a default instance value record

= a value record that can be declared not to be null

Valhalla: Primitive Type

public value record Population(int population) {

 public default Population();

 public Population {
 if (x < 0) throw new IllegalArgumentException("Nope!");
 }
}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |98

When using this type, you can declare that it cannot be
null. The default instance will be used instead.

Valhalla: Primitive Type

Population[] pops = new Population[10]; // filled with null values

Population![] pops = new Population![10]; // filled with default values

value record City(String name, Population! population) {}

12/6/2023Copyright © 2021, Oracle and/or its affiliates |99

When using this type, you can declare that it cannot be
null. The default instance will be used instead.

Valhalla: Primitive Type

List<Population!> populations = Arrays.asList(new Population![10]);

populations.set(0, null); // this is not legal anymore

12/6/2023Copyright © 2021, Oracle and/or its affiliates |100

With that in mind, all these have the same in-memory
representation:

- List<Integer!> and List<int>

- 314 and Integer.valueOf(314)

So this kind of syntax becomes possible:

Valhalla: Primitive Type

double d = 314.doubleValue();
Supplier<String> function = 314::toString;

12/6/2023Copyright © 2021, Oracle and/or its affiliates |101

Modeled by default instance value classes

As such, they have no identity

It is a bare sequence of field values, without any headers
of extra pointers

== compares the field values

They have a default value

You can decide to have null values or not

Valhalla: Primitive Type

12/6/2023Copyright © 2021, Oracle and/or its affiliates |102

Extra pointers / space in memory

Layout in Memory

int

Population

cities

String

population

City

Object version

12/6/2023Copyright © 2021, Oracle and/or its affiliates |103

Can inline everything

Layout in Memory

cities
String

int

City![] / Population! version

String

int

String

int

String

int

12/6/2023Copyright © 2021, Oracle and/or its affiliates |104

Identity class
- nullable

- non-tearable

- boxing not needed

- non flattened

Valhalla: Primitive Type

Value class
- nullable

- non-tearable

- boxing not needed

- flattened

- on the stack

- on the heap?

Default instance
- default value

- tearable?

- can be boxed

- flattened

- on the stack

- on the heap

12/6/2023Copyright © 2021, Oracle and/or its affiliates |105

The well-known wrapper classes are to be converted to
primitive classes

More value classes:

Optional, LocalDate, …

Valhalla: Primitive Type

12/6/2023Copyright © 2021, Oracle and/or its affiliates |106

JDK 21 JDK 22

Value types EA builds ?

Primitive Types EA builds ?

And the rest… EA builds ?

Valhalla: Current Plan for the JDK 2?

Have fun
with Amber,
Loom,
Valhalla, and
the others!

12/6/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted108

Amber, Loom, Valhalla

12/6/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted109

Links

12/6/2023Copyright © 2021, Oracle and/or its affiliates |110

Amber
Switch Expression: http://openjdk.java.net/jeps/361

Record: http://openjdk.java.net/jeps/395

Sealed Classes: http://openjdk.java.net/jeps/409

Pattern Matching for instanceof: http://openjdk.java.net/jeps/394

Pattern Matching for Switch (3rd preview): http://openjdk.java.net/jeps/427

Record Patterns: http://openjdk.java.net/jeps/405

Links and References

http://openjdk.java.net/jeps/361
http://openjdk.java.net/jeps/395
http://openjdk.java.net/jeps/409
http://openjdk.java.net/jeps/394
http://openjdk.java.net/jeps/427
http://openjdk.java.net/jeps/405

12/6/2023Copyright © 2021, Oracle and/or its affiliates |111

Loom
Virtual Threads (preview): http://openjdk.java.net/jeps/425

Structured Concurrency (incubator): http://openjdk.java.net/jeps/428

Links and References

http://openjdk.java.net/jeps/425
http://openjdk.java.net/jeps/428

12/6/2023Copyright © 2021, Oracle and/or its affiliates |112

Valhalla
Universal Generics: http://openjdk.java.net/jeps/8261529

Value Objects: https://openjdk.org/jeps/8277163

Primitive Classes (preview): https://openjdk.java.net/jeps/401

Classes for Basic Primitives (preview): https://openjdk.java.net/jeps/402

Links and References

http://openjdk.java.net/jeps/8261529
https://openjdk.org/jeps/8277163
https://openjdk.java.net/jeps/401
https://openjdk.java.net/jeps/402

12/6/2023Copyright © 2021, Oracle and/or its affiliates |113

Panama
Vector API (4th incubator) http://openjdk.java.net/jeps/426

Foreign Function & Memory API (preview): http://openjdk.java.net/jeps/424

Links and References

http://openjdk.java.net/jeps/426
http://openjdk.java.net/jeps/424

	Pillar Title slides
	Diapositive 1 From Java 17 to 21 and beyond: Amber – Loom – Valhalla
	Diapositive 2
	Diapositive 3
	Diapositive 4 Tune in!
	Diapositive 5 OpenJDK is the place where it all happens
	Diapositive 6 OpenJDK is the place where it all happens
	Diapositive 7 Amber, Loom, Valhalla
	Diapositive 8 Amber, Loom, Valhalla
	Diapositive 9 Amber, Loom, Valhalla
	Diapositive 10 Amber, Loom, Valhalla
	Diapositive 11 Project Amber
	Diapositive 12 OOP according to Java
	Diapositive 13 OOP according to Java
	Diapositive 14 OOP according to Java
	Diapositive 15 Anatomy of a Web Application
	Diapositive 16 Anatomy of a Web Application
	Diapositive 17
	Diapositive 18
	Diapositive 19 Object Oriented Programming
	Diapositive 20 Consequences
	Diapositive 21 Drawbacks?
	Diapositive 22 Drawbacks!
	Diapositive 23 Data Oriented Programming
	Diapositive 24 Data Oriented Programming
	Diapositive 25 Data Oriented Programming
	Diapositive 26 Problems?
	Diapositive 27 Data Oriented Programming
	Diapositive 28 Data Oriented Programming
	Diapositive 29 Data Oriented Programming
	Diapositive 30 Data Oriented Programming
	Diapositive 31 Amber: Pattern Matching
	Diapositive 32 Amber: Record Pattern
	Diapositive 33 The Unnamed Pattern (prev 21)
	Diapositive 34 Amber: Switch Expression + Record Pattern
	Diapositive 35 Data Oriented Programming
	Diapositive 36 Wadler’s Expression of the Problem
	Diapositive 37 More Patterns: Record Pattern on Classes
	Diapositive 38 Named Pattern
	Diapositive 39 Imperative Destructuring
	Diapositive 40 Amber: Current Plan for the JDK 21
	Diapositive 41 Loom
	Diapositive 42 Loom: Virtual Threads
	Diapositive 43 Concurrency Issues
	Diapositive 45 Loom: Virtual Threads
	Diapositive 46 Loom: Virtual Threads
	Diapositive 47 Concurrency Issues
	Diapositive 48 Concurrency Issues
	Diapositive 49 Concurrency Issues
	Diapositive 50 Concurrency Issues
	Diapositive 51 Concurrency Issues
	Diapositive 52 Concurrency Issues
	Diapositive 53 Concurrency Issues
	Diapositive 54 Concurrency Issues
	Diapositive 55 Concurrency Issues
	Diapositive 56 Loom: Virtual Threads
	Diapositive 57 Loom: Virtual Threads
	Diapositive 58 Loom: Virtual Threads
	Diapositive 59 Loom: Virtual Threads
	Diapositive 60 Loom: Virtual Threads
	Diapositive 61 From the Platform Thread Point of View
	Diapositive 62 From the Platform Thread Point of View
	Diapositive 63 Wrapping up Virtual Threads
	Diapositive 64 Loom: Structured Concurrency (prev 21)
	Diapositive 65 Loom: Structured Concurrency (prev 21)
	Diapositive 66 Loom: Structured Concurrency (prev 21)
	Diapositive 67 Loom: Structured Concurrency (prev 21)
	Diapositive 68 ScopedValue (prev 21)
	Diapositive 69 ScopedValue (prev 21)
	Diapositive 70 ScopedValue (prev 21)
	Diapositive 71 ScopedValue (prev 21)
	Diapositive 72 ScopedValue (prev 21)
	Diapositive 73 Loom: Current Plan for the JDK 21
	Diapositive 74 Valhalla
	Diapositive 75 Valhalla
	Diapositive 76 Valhalla
	Diapositive 77 Valhalla
	Diapositive 78 Valhalla: Value Classes
	Diapositive 79 Valhalla: Value Classes
	Diapositive 80 Layout in Memory
	Diapositive 81 Valhalla: Value Classes
	Diapositive 82 Layout in Memory
	Diapositive 83 Valhalla
	Diapositive 84 Valhalla: Value Classes
	Diapositive 85 Valhalla: Value Classes
	Diapositive 87 Valhalla: Value Classes
	Diapositive 88 Layout in Memory
	Diapositive 89 Layout in Memory
	Diapositive 92 Valhalla: Primitive Type
	Diapositive 93 Valhalla: Primitive Type
	Diapositive 94 Valhalla: Primitive Type
	Diapositive 95 Valhalla: Primitive Type
	Diapositive 96 Valhalla: Primitive Type
	Diapositive 98 Valhalla: Primitive Type
	Diapositive 99 Valhalla: Primitive Type
	Diapositive 100 Valhalla: Primitive Type
	Diapositive 101 Valhalla: Primitive Type
	Diapositive 102 Layout in Memory
	Diapositive 103 Layout in Memory
	Diapositive 104 Valhalla: Primitive Type
	Diapositive 105 Valhalla: Primitive Type
	Diapositive 106 Valhalla: Current Plan for the JDK 2?
	Diapositive 107
	Diapositive 108 Amber, Loom, Valhalla
	Diapositive 109 Links
	Diapositive 110 Links and References
	Diapositive 111 Links and References
	Diapositive 112 Links and References
	Diapositive 113 Links and References

